Two inhibitors of the ubiquitin proteasome system enhance long-term memory formation upon olfactory conditioning in the honeybee (Apis mellifera).
نویسندگان
چکیده
In honeybees (Apis mellifera), the proteasome inhibitor Z-Leu-Leu-Leu-CHO (MG132) enhances long-term memory (LTM) formation. Studies in vertebrates using different inhibitors of the proteasome demonstrate the opposite, namely an inhibition of memory formation. The reason for this contradiction remains unclear. MG132 is an inhibitor of the proteasome, but also blocks other proteases. Accordingly, one possible explanation might be that other proteases affected by MG132 are responsible for the enhancement of LTM formation. We test this hypothesis by comparing the effect of MG132 and the more specific proteasome inhibitor clasto-lactacystin beta-lactone (β-lactone). We show that these two inhibitors block the activity of the proteasome in honeybee brains to a similar extent, do not affect the animals' survival but do enhance LTM retention upon olfactory conditioning. Thus, the enhancement of LTM formation is not due to MG132-specific side effects, but to inhibition of a protease targeted by MG132 and β-lactone, i.e. the proteasome.
منابع مشابه
Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera).
The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that...
متن کاملCyclic nucleotide-gated channels, calmodulin, adenylyl cyclase, and calcium/calmodulin-dependent protein kinase II are required for late, but not early, long-term memory formation in the honeybee.
Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee Apis mellifera, olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM) are formed upon multiple-trial conditioning: an early phase (...
متن کاملInhibition of Nitric Oxide Synthase Impairs a Distinct Form of Long-Term Memory in the Honeybee, Apis mellifera
Nitric oxide has been shown to be implicated in neural plasticity that underlies processes of learning and memory. In the honeybee, studies on the role of nitric oxide in associative olfactory learning reveal its specific function in memory formation. Inhibition of nitric oxide synthase during olfactory conditioning impairs a distinct long-term memory that is formed as a consequence of multiple...
متن کاملImidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.)
Imidacloprid is a chloronicotinyl insecticide which interacts with insect nicotinic acetylcholine receptors. Thirty minutes after oral treatment of honeybees with imidacloprid, the olfactory learning performances in a proboscis extension reflex (PER) procedure were impaired. In parallel, an increase of the cytochrome oxidase labelling was found into the calyces of the mushroom bodies. Imidaclop...
متن کاملInvolvement of alpha-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera).
In the honeybee Apis mellifera, multiple-trial olfactory conditioning of the proboscis extension response specifically leads to long-term memory (LTM) which can be retrieved more than 24 h after learning. We studied the involvement of nicotinic acetylcholine receptors in the establishment of LTM by injecting the nicotinic antagonists mecamylamine (1 mM), alpha-bungarotoxin (alpha-BGT, 0.1 mM) o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 217 Pt 19 شماره
صفحات -
تاریخ انتشار 2014